The Future of Television
ATSC 3.0

NOVEMBER 2016
Introduction

• ATSC 3.0 is a revolutionary advance in television broadcasting

• A first of its kind offering Internet-like IP transmission over-the-air

• It is unique in the world; a marriage of OTA and Internet technologies

• Supports seamless compatibility with terrestrial delivered Internet content.
The Goals of ATSC 3.0

• To improve the television viewing experience

• To add value to broadcasting’s service platform
 - Extending reach, adding new business models
 - Providing higher audio and video quality, more accessibility
 - Personalization and interactivity

• To address changing consumer behavior and preferences
 - TV content on all devices, both fixed and mobile
ATSC 3.0 Participation

- 373 individuals on reflector/document system
 - Many others focused on 3.0 development efforts

- 110 organizations
 - Broadcasters
 - Consumer Electronics Manufacturers
 - Professional Equipment Manufacturers
 - R&D Laboratories
 - Universities

- International Participation
 - Canada
 - China
 - Europe (including DVB)
 - Japan (including NHK)
 - South Korea
 - United States
Key Technology Enhancements in 3.0

• Flexible, robust transmission system - OFDM-based modulation
 o Greater capacity (more bits per channel)
 o Flexible configuration – receivability vs capacity
 o Integrated mobile capabilities

• Increased Capacity
 o Existing program channels can display higher quality
 o Additional program channels – HEVC video compression

• Enhanced Consumer Experience
 ▪ Improved Video Quality
 o Higher Resolution - UHD
 o More realistic looking pictures - HDR
 o Enhanced color reproduction - WCG
 o Improved motion rendition – HFR
 ▪ Enhanced Audio Experience
 o Multiple languages & descriptive audio
 o Viewer controlled prominence of dialog
 o Immersive sound
Flexible Receivability in 3.0
What Can Fit in a 6 MHz Channel?

ATSC 1.0 = 13 capacity units

ATSC 3.0 = 36 capacity units

\(\{3 \text{ times the Capacity}\)
Next Generation Audio

• Higher quality less Bandwidth
• Immersive – Builds a 3D sound field that envelops you
• Personalized experience
 ▪ Alternative languages
 ▪ Descriptive audio
• Native support for user defined Dialog Enhancement
• Loudness Control
• Targeted to various devices (fixed, mobile) and set-ups
• Improved down-mix compatibility
Internet Compatibility

• Goal is to deliver a personal and dynamic experience
 - HTML5 / Internet overlay graphics
 - Hybrid delivery — merging broadcast and internet
 - Dynamic ad insertion
 - Personalized graphics
 - Interactivity capabilities
 - Synchronized second-screen applications
 - Audience measurement capabilities

• Aligns with the web
 - Based on W3C technologies
 - Easy to adapt web apps for TV and vice versa

• Content can be streamed in real time (i.e., linear or streaming on demand content) via both broadcast and broadband

• Content can be delivered in non-real time and cached locally via both broadcast and broadband
New Public Service Capabilities

• Emergency Alerting
 ▪ Extremely robust EAS “wake up” signaling
 ▪ Advanced EAS messaging capabilities including rich media
 ▪ Ability to reach indoor, battery-powered receivers

• Robust Audio and Closed-Caption transmission even when picture fails

• Improved audio intelligibility for hearing impaired
 ▪ New capabilities for improved dialog/narrative intelligibility (track – specific volume control)
 ▪ Continued support for Video Description Services
World Series Broadcast in ATSC 3.0
Schedule

• ATSC 3.0 is a suite of standards
 ▪ One or more standards per layer
 ▪ Each standard moves through the process independently
 ▪ Most will move to Candidate Standard in 2016

• Final approval of most documents is expected in 2016, with completion of all in the first / second quarter of 2017

• FCC considering change in rules to authorize use of ATSC 3.0

• ATSC 3.0 selected by South Korea
Summary

- Next generation broadcast television
 - Significantly higher data capacity
 - Flexible spectrum use
 - Higher physical layer robustness
 - Future extensibility
 - Mobile / handheld support
 - Hybrid broadcast + broadband delivery
 - Advanced A / V compression
 - Immersive audio, UHD video
 - Interactivity and personalization
 - Potential for new business models
 - Provide a path to the future of broadcasting
Mark Richer
President, ATSC
mricher@atsc.org

Richard Friedel
Chairman of ATSC &
GM Fox Network Engineering & Operations
richard.friedel@fox.com

QUESTIONS?
The Future of Television
ATSC 3.0

NOVEMBER 2016
Extra Slides
What is New in ATSC 3.0?
Capabilities beyond 1.0

• Robust Transmission
 - Flexible configuration – receivability vs capacity
 - Able to tune transmission parameters to optimize mobile vs. fixed viewers
 - SFN
 - On channel repeaters
 - Mobile reception - tablets
 - Deep indoor reception – reduced need for rooftop antennas
 - Can be configured to individual DMA needs

• Future proof
 - Designed to evolve – technology stays state of the art
 - Created in modules for straightforward updates
 - Signaling incorporated to signify alternate choices
 - Flexible configurations
Requirements for the New System

• Flexible, robust transmission system
 ▪ Greater capacity (more bits per channel)
 ▪ Ability to trade-off capacity for robustness
 ▪ Integrated mobile capabilities

• Advanced audio / video coding systems
 ▪ Ultra-high-definition video
 ▪ Immersive and personalized audio

• Future capabilities
 ▪ Extensibility and scalability
ATSC 3.0 PHY Layer Operating Range

Capacity Curve in AWGN at BER=1E-6

Huge number of possible operating points for broadcaster

Low Capacity, Very Robust

High Capacity, Less Robust

ATSC 1.0 a SINGLE PHY 19.39 Mbps
7.1.4 Immersive Audio
ATSC 1.0

- HDTV & SD multicast
 - HDTV – MPEG-2 (12 – 18 Mbps)
 - SDTV – MPEG-2 (3 – 5 Mbps)
- Dolby Digital (AC-3) 5.1 surround sound

Standard Dynamic Range and Color
100-nit color grading, Rec. 709 color, 8 bits/pixel

ATSC 3.0

- UltraHD and/or HD and/or SD multicast
 - UHD-HDR-WCG – HEVC (18 – 30 Mbps)
 - HD 1080p-HDR- WCG – HEVC (6 – 8 Mbps)
 - HD – HEVC (2 – 6 Mbps)
 - SD – HEVC (0.75 – 1.5 Mbps)
- Next-Generation Audio (Personalized …Immersive)
 - Dolby AC-4 in the US; MPEG-H in Korea

High Dynamic Range and Wide Color Gamut
1000-nit color grading, Rec. 2020 color, 10 bits/pixel
Key Video Features

• The ATSC 3.0 video system will support
 ▪ UHD (4K) delivery is a key goal of ATSC 3.0
 ▪ Enhanced HD
 ▪ Wide color gamut, high dynamic range, scalable
 ▪ Targeting small screens (HD) and large screens
 ▪ Multiple, selectable video components
 ▪ 3D support

• State-of-the-art video compression
 ▪ HEVC Main 10 Profile specified
 o 35 – 50% performance gains vs AVC/H.264

• Several HDR proposals submitted and under evaluation
 o Video quality (compression efficiency)
 o Backward compatibility with SDR (100nit, ITU Rec.709)
 o Production workflow considerations
More Channel Capacity Than ATSC 1.0

\[\text{ATSC 1.0} = 13 \text{ capacity units} \]
\[\text{ATSC 3.0} = 36 \text{ capacity units} \]

3 times the Capacity
Key Audio Features

The ATSC 3.0 audio system will feature

• An enhanced, immersive experience
 ▪ Sound with improved azimuth, elevation, and distance perspective
 ▪ Use of channels and objects or “elements” and metadata
 o Metadata allows rendering at the decoder, customized to the user’s sound system
 o The decoder places the sound in the most accurate position that the user’s sound system can support

• Targeted to various devices (fixed, mobile) and set-ups

• Personalization

• Support for audio-only content as well as A / V content

• Hybrid broadcast / broadband delivery will be supported

• Normalization of content loudness and contouring of dynamic range
 ▪ Based on the specific capabilities of a user’s fixed or mobile device, and the unique sound environment
Key Applications Environment Features

- **Goal is to deliver a personal and dynamic experience**
 - HTML5 / Internet overlay graphics
 - Hybrid delivery — merging broadcast and internet
 - Dynamic ad insertion
 - Personalized graphics
 - Interactivity capabilities
 - Synchronized second-screen applications
 - Immersive audio — user control of tracks and mix
 - Audience measurement capabilities

- **Content can be streamed in real time (i.e., linear or streaming on demand content) via both broadcast and broadband**

- **Content can be delivered in non-real time and cached locally via both broadcast and broadband**
Key Interactive Services

- **ATSC is specifying an interactive application environment for ATSC 3.0**
 - The standard will enable interoperability between the receiver runtime environment and the apps that producers and broadcasters author

- **Based on W3C technologies**
 - Goal is to align with the web as much as possible
 - Ideally, application authors will be able to easily adapt web apps for TV and vice versa

- **ATSC 3.0 will add TV-centric functions to the W3C technologies**
 - Change the channel
 - Check parental control setting
 - Access the device’s PVR
 - Response to a timed event in the program
Interactivity – Information Bar

News Program

Program Image

UI Module

Send Buttons
Interactivity – Shopping
Key Technology Enhancements in 3.0

Integrated Internet Compatibility

- Unique convergence of OTA and terrestrial internet
- Over the air delivery of up to 24Mb/s broadband IP into homes
- Fully integrated broadcast (OTA) / broadband (BB) core
 - Content can be seamlessly provided to consumer over broadcast and broadband & combined at receiver
 - Localized insertion of ads or other content
 - Network handoff – 3.0 to/from LTE & Wi-Fi depending on most reliable network available (inside home or on the go).

- Downloadable interactive applications
 - Second screen
 - WEB based browser environment
- Provides for non-real time delivery
ATSC 3.0 Is The Glue

ATC 3.0

Existing Broadcast Ecosystem

Existing Internet Ecosystem

Live TV

Catch-up and VOD

New Business Models

VIEWERS

BROADCAST

INTERNET
Key Technology Enhancements in 3.0

• Flexible, robust transmission system - OFDM-based modulation
 o Greater capacity (more bits per channel)
 o Flexible configuration – receivability vs capacity
 o Integrated mobile capabilities

• Increased Capacity
 o Existing program channels can display higher quality
 o Additional program channels – HEVC video compression

• Enhanced Consumer Experience
 ▪ Improved Video Quality
 o Higher Resolution - UHD
 o More realistic looking pictures - HDR
 o Enhanced color reproduction - WCG
 o Improved motion rendition – HFR
 ▪ Enhanced Audio Experience
 o Multiple languages & descriptive audio
 o Viewer controlled prominence of dialog
 o Immersive sound
Key Video Features

• The ATSC 3.0 video system will support
 ▪ Up to UHD (4K) delivery is a key goal of ATSC 3.0
 ▪ Enhanced HD
 ▪ Wide color gamut, high dynamic range, scalable coding
 ▪ Targeting small screens (HD) and large screens (UHD)
 ▪ Multiple, selectable video components
 ▪ 3D support

• State-of-the-art video compression
 ▪ HEVC Main 10 Profile specified
 o 35 – 50% performance gains vs AVC/H.264

• Several HDR proposals submitted and under evaluation
 o Video quality (compression efficiency)
 o Backward compatibility with SDR (100nit, ITU Rec.709)
 o Production workflow considerations